Edward Hermann Hausler Mario Benevides Valeria de Paiva Alexandre Rademaker

Departamento de Informática - PUC-Rio - Brasil Coppe-UFRJ FGV - Brasil Univ. Birmingham - UK

EMAP November 2011

・ロット (雪) (日) (日)

Easy tasks versus Hard tasks

Basic considerations on SAT

- It is easy to verify that a boolean formula is truth under an assignment.
- Is it easy to find/build an assignment that satisfies a boolean formula ?
- What is "easy" in computational terms ??
- Worst case analysis for algorithms.
- Best algorithm analysis for problems.

Easy tasks versus Hard tasks

Finding an assignment that satisfies a boolean formula α , considering that each million assignments is evaluated in

1 sec. Naive Algorithm

k	2 ^k	Time
5	32	insignificant
10	1024	0.001 seg
16	65536	0.06 seg
20	1048 x 10 ³	1 seg
32	4.29 x 10 ⁹	1h 12 min

・ロト ・ 四ト ・ ヨト ・ ヨト

Easy tasks versus Hard tasks

Problems as hard as SAT

- Given a directed graph G, is there a cycle that visits every vertex exactly once? (*Hamilton*)
- ► Given n cities, and distances d(i, j) between each pair of cities, does there exist a path of length ≤ k that visits each city exactly once? (*TravelingSalesman*)
- It is easy to verify that a route is a hamiltonian cycle in the graph. How about finding a route that is a hamiltonian cycle ?
- ► An efficient solution to *Hamilton* carries with it an efficient solution to *SAT*.
- An efficient solution to SAT carries with it an efficient solution to Hamilton.

Time used to find a cycle in a Graph with k vertexes

The computer verifies 1 million routes in 1 sec.

k	(k - 1)!	Cálculo total
5	24	insignificante
10	362 880	0.3 seg
15	87 bilhões	24 hs e 6 min
20	1.2 x 10 ¹⁷	3 milhões de anos
25	6.2 x 10 ²³	0.19 x 10 ¹⁷ anos

On the Computational Complexity of Intuitionistic Modal and Description Logic \bigsquare Motivation

Solving SAT using Hamilton

æ

・ロト ・聞ト ・ヨト ・ヨト

Some Complexity Classes under Cook-Karp-thesis

Time Classes

$\mathcal{P} \subset \mathcal{NP} \subset \mathcal{EXP} \subset \mathcal{NEXP}$

Some Complexity Classes under Cook-Karp-thesis

Space Classes

$\mathcal{L} \subset \mathcal{NL} \subset \mathcal{PSPACE} = \mathcal{NPSPACE} \subset \mathcal{EXPSPACE} \subset \mathcal{NEXPSPACE}$

Alternating Turing Machines

 \exists -accepting states and \forall -accepting states.

Facts and main uses of ATM

- $\blacktriangleright \mathcal{NP} = \mathcal{APTIME} / \exists.$
- $\blacktriangleright CONP = APTIME/\forall.$
- APTIME = PSPACE and APSPACE = EXP.
- APTIME complete problems concerns knowing in a 2-person perfect information game, whether player 1 has a winning strategy (Games against Nature).
- ▶ BQF, is APTime-complete and hence PSPACE-complete.
- Intuitionistic Logic (IPL), many Modal Logics (S4, KT, K, etc) and the core of the Description Logics (ALC) are *PSPACE*-complete.

・ ロ ト ・ 雪 ト ・ 目 ト ・

Computational Complexity of Combined Modal Logics

Curious Phenomena

- K is *PSPACE* and $K \times K$ is *PSPACE*.
- K4 is PSPACE-complete, but K × K4 is EXPTIME-complete.
- S5 is NP-complete, S5 × S5 is coNEXPTIME-completes and S5 × S5 × S5 is undecidable.
- ► (<, ω) and K4 are PSPACE-complete, but their product is undecidable.
- Int is PSPACE and IK (Int × K) is PSPACE-complete. (Open ??)

・ロット (雪) ・ (日) ・ (日)

The logic IK

The language of IK is described by the following grammar.

$$A ::= P \mid \bot \mid \neg A \mid A \land A \mid A \lor A \mid A \to A \mid \Box A \mid \diamond A$$

Let $\mathcal{M} = \langle W, \leq, R, V \rangle$ be a Kripke model for IK, $w \in W$ and α be an IK formula. The satisfaction relation, $\mathcal{M}, w \models \alpha$, is defined inductively as follows:

A
$$\mathcal{M}, w \models P$$
, iff, $P \in V(w)$
B $\mathcal{M}, w \not\models \bot$
C $\mathcal{M}, w \models \alpha \land \beta$, iff, $\mathcal{M}, w \models \alpha$ and $\mathcal{M}, w \models \beta$
D $\mathcal{M}, w \models \alpha \lor \beta$, iff, $\mathcal{M}, w \models \alpha$ or $\mathcal{M}, w \models \beta$
NEG $\mathcal{M}, w \models \neg \alpha$, iff, for all $w', w \le w', \mathcal{M}, w' \models \alpha$
IMP $\mathcal{M}, w \models \alpha \rightarrow \beta$, iff, for all $w', w \le w'$, if $\mathcal{M}, w' \models \alpha$ then $\mathcal{M}, w' \models \beta$
BOX $\mathcal{M}, w \models \Box \alpha$, iff, for all $w', w \le w'$, for all $v', w'Rv', \mathcal{M}, v' \models \alpha$.

ヘロン ヘ週ン ヘヨン ヘヨン

ъ

- Motivation

s and R are not independent

・ロン ・四 と ・ ヨ と ・ ヨ と

Motivation

Metatheorems on IK

- IK is sound and complete regarded IK frames.
- $IPL \subset iALC$ (hardness is PSPACE)
- Alternating Polynomial Turing-Machine to find out winner-strategy on the SAT-Game adapted from Areces2000 (upper-bound is PSPACE).

- Motivation

IK is PSPACE-complete

$SAT_{IK} \subset PSPACE$

- One wants to verify whether $\Gamma \rightarrow \gamma$ is satisfiable.
- Γ → γ is satisfiable, if and only if, (□_{θ∈Γ}θ) → γ is satisfiable in a model of Γ. A game is defined on Γ ∪ {γ}
- ∃loise starts by playing a list {L₀,..., L_k} of Γ ∪ {γ}-Hintikka I-sets, and two relations R and ≺ on them.
- \blacktriangleright \exists loise loses if she cannot provide the list as a pre-model.
- ► ∀belard chooses a set from the list and a formula inside this set.
- ► ∃loise has to verify/extend the (pre)-model in order to satisfy the formula.
- $\Gamma \cup \gamma$ is satisfiable, iff, $\exists loise$ has a winning strategy.

 Δ -Hintikka I-set is a maximal prime consistent set of subformulas from Δ .

・ロット (雪) (日) (日)

Fixing a missing point in the proof

The initial move of \exists *loise* is:

 \exists loise starts by playing a list { L_0, \ldots, L_k } of $(\Gamma \cup \{\gamma\})$ -Hintikka I-sets, and two relations \mathcal{R} and \prec on them.

The following condition has to be added:

k should be polynomially bounded by $\alpha = \Gamma \rightarrow \gamma$ length.

・ コ ト ・ 雪 ト ・ ヨ ト ・ ヨ ト

- Motivation

Can ∃loise be happy at the first move ?

The conditions on $\{L_0, \ldots, L_k\}$ list of α -Hintikka I-sets

- CF1 If $L_w \preccurlyeq L'_w$ and $L_w \mathcal{R} L_v$ then there exists L'_v , such that $L'_w \mathcal{R} L'_v$ and $L_v \preccurlyeq L'_v$.
- CF2 If $L_v \preccurlyeq L'_v$ and $L_v \mathcal{R} L_w$ then there is L'_w , such that $L_w \preccurlyeq L'_w$ and $L'_v \mathcal{R} L'_w$.
- Here If $\beta \in \mathcal{F}(\alpha)$, $\beta \in L_i$ and $L_i \preccurlyeq L_j$, then $\beta \in L_j$.
- Form $\alpha \in L_0$ and, if $L_i = L_j$ then i = j
- **CNEG** for all L_i , for all $\neg \beta \in \mathcal{F}(\alpha)$, if $L_i \preccurlyeq L_j$ and $\beta \in L_j$ then $\neg \beta \notin L_i$
 - AND for all L_i , for all $\beta_1 \land \beta_2 \in \mathcal{F}(\alpha)$, if $\beta_1 \land \beta_2 \in L_i$ then $\beta_k \in L_i$, k = 1, 2
 - OR for all L_i , for all $\beta_1 \lor \beta_2 \in \mathcal{F}(\alpha)$, if $\beta_1 \lor \beta_2 \in L_i$ then either $\beta_1 \in L_i$ or $\beta_2 \in L_2$
- CIMP for all L_i , for all $\beta_1 \to \beta_2 \in \mathcal{F}(\alpha)$, if $L_i \prec L_j$, $\beta_1 \in L_j$ and $\beta_2 \notin L_j$ then $\beta_1 \to \beta_2 \notin L_i$
- CIDIA for all $\diamond \beta \in \mathcal{F}(\alpha)$, if $L_i \mathcal{R} L_j$ and $\diamond \beta \notin L_i$ then $\beta \notin L_j$
- CIBOX for all L_i and L_j , for all $\Box \beta \in \mathcal{F}(\alpha)$, if $L_i \prec L_j$, $L_j \mathcal{R} L_h$ and $\beta \notin L_h$, then $\Box \beta \notin L_i$

Motivation

And \forall belard goes on $\{L_0, \ldots, L_k\}$...

If \exists loise does not lose when she presents $\{L_0, \ldots, L_k\}$ then the match continues and \forall belard may follow one of the two items below: MODAL \forall belard must choose three sets $L_i, L_i, L_h, L_i \prec L_i, L_i \mathcal{R} L_h$ and a formula $A \in L_i$ to attack and \exists loise must respond according to the following items: DIA If A is $\diamond \beta$, then \exists loise must provide an α -Hintikka set Y, such that: $\beta \in Y$ and for all $\diamond \gamma \in \mathcal{F}(\alpha)$, if $\diamond \gamma \notin L_i$ then $\gamma \notin Y$. For all $\Box \gamma \in \mathcal{F}(\alpha)$, if $\Box \gamma \in L_i$ then $\Box \gamma \in L_i$ and $\gamma \in Y$. BOX If A is $\Box \beta$, then \exists loise must provide an α -Hintikka set Y, such that: $\beta \in Y$ and for all $\Box \gamma \in \mathcal{F}(\alpha)$, for each $L_k, L_k \preccurlyeq L_i$, such that $\Box \gamma \in L_k$ then $\gamma \in Y$. For all $\diamond \gamma \in \mathcal{F}(\alpha)$, if $\diamond \gamma \notin L_i$ then $\gamma \notin Y$. IntProp For all $\neg \gamma \in \mathcal{F}(\alpha)$, if $\neg \gamma \in L_b$ then $\gamma \notin Y$. For all $\gamma_1 \to \gamma_2 \in \mathcal{F}(\alpha)$, if $\gamma_1 \to \gamma_2 \in L_h$ then either $\beta_1 \notin Y$ or $\beta_2 \in Y$ INTUL \forall belard must choose three sets $L_i, L_i, L_h, L_i \not\prec L_h, L_i \mathcal{R}L_i$ and a formula $A \in L_i$ to attack and ∃loise must respond according to the following items: Imp If A is $\beta_1 \rightarrow \beta_2$, then \exists loise must provide an α -Hintikka set Y, such that, either $\beta_1 \notin Y$ or $\beta_2 \in Y$. For all $\neg \gamma \in \mathcal{F}(\alpha)$, if $\neg \gamma \in L_i$ then $\gamma \notin Y$. For all $\gamma_1 \to \gamma_2 \in \mathcal{F}(\alpha)$, if $\gamma_1 \to \gamma_2 \in L_i$ then either $\beta_1 \not\in Y$ or $\beta_2 \in Y$. Neg If A is $\neg \beta$, then $\exists loise$ must provide an α -Hintikka set Y, such that, $\beta \notin Y$. For all $\neg \gamma \in \mathcal{F}(\alpha)$, if $\neg \gamma \in L$; then $\gamma \notin Y$. For all $\gamma_1 \rightarrow \gamma_2 \in \mathcal{F}(\alpha)$, if $\gamma_1 \rightarrow \gamma_2 \in L_i$ then either $\beta_1 \notin Y$ or $\beta_2 \in Y.$ Modal For all $\diamond \gamma \in \mathcal{F}(\alpha)$, if $\diamond \gamma \notin Y$ then $\gamma \notin L_h$. For all $\Box \gamma \in \mathcal{F}(\alpha)$, if $\gamma \not\in L_h$, then $\Box \gamma \not\in Y$. STOP1 In any of the items above, if the Y \exists loise provides is among the α -Hintikka sets already on the match, then the game stops and $\exists loise$ win. STOP2 If *delard* cannot provide any of the three sets stated in items MODAL and INTUI, under the respective conditions, then ∃loise wins. ・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

Ensuring that k is polynomially bounded by $lenght(\alpha)$

- We can see the list {*H*₀,...,*H_k*} together with the relations *R* and *≺* in a tree-form.
- We prove that this tree has a polynomially bounded height regraded *lenght*(α).
- We prove that this tree has log₂(lenght(α)) possible ramifications.
- We conclude the polynomial bound on k

・ロット (雪) (日) (日)

- Motivation

Technical Lemmas

Lemma

Let $L = \{H_0, H_1, \ldots, H_k\}$ be a list of α -Hintikka sets satisfying the conditions stated in 14. Let $\{H_{p_0}, \ldots, H_{p_i}, \ldots, H_{p_n}\}$ be a maximal sub-list of L, such that for all $j = 0, n - 1, H_{p_j} \mathcal{R} H_{p_{j+1}}$ or for all $j = 0, n - 1, H_{p_j} \preccurlyeq H_{p_{j+1}}$, and for all $j_1, j_2 = 0, n$, if $H_{p_{j_1}} = H_{p_{j_2}}$ then $j_1 = j_2$. So, k is polynomially bounded by $l(\alpha)$.

Lemma

Let $L = \{H_0, H_1, \ldots, H_k\}$ be a list of α -Hintikka sets satisfying the conditions stated in 14. Let $\{H_{p_0}, \ldots, H_{p_i}, \ldots, H_{p_n}\}$ be a maximal sub-list of L, such that for all j = 1, n, there are $j_1 \neq j_2, j_1, j_2 = 0$, k such that, $H_{p_j} \mathcal{R} H_{j_1}$ and $H_{p_j} \preccurlyeq H_{j_2}$. Under these conditions, $n = c.log(I(\alpha))$.

・ ロ ト ・ 雪 ト ・ ヨ ト ・ 日 ト

- Motivation

THANK YOU

・ロト ・聞ト ・ヨト ・ヨト