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Motivation

Easy tasks versus Hard tasks

Basic considerations on SAT

I It is easy to verify that a boolean formula is truth under an
assignment.

I Is it easy to find/build an assignment that satisfies a
boolean formula ?

I What is “easy” in computational terms ??
I Worst case analysis for algorithms.
I Best algorithm analysis for problems.
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Motivation

Easy tasks versus Hard tasks

Finding an assignment that satisfies a boolean formula α, considering that each million assignments is evaluated in

1 sec. Naive Algorithm
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Easy tasks versus Hard tasks

Problems as hard as SAT

I Given a directed graph G, is there a cycle that visits every
vertex exactly once? (Hamilton)

I Given n cities, and distances d(i , j) between each pair of
cities, does there exist a path of length ≤ k that visits each
city exactly once? (TravelingSalesman)

I It is easy to verify that a route is a hamiltonian cycle in the
graph. How about finding a route that is a hamiltonian
cycle ?

I An efficient solution to Hamilton carries with it an efficient
solution to SAT .

I An efficient solution to SAT carries with it an efficient
solution to Hamilton.
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Time used to find a cycle in a Graph with k vertexes

The computer verifies 1 million routes in 1 sec.
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Solving SAT using Hamilton
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Some Complexity Classes under Cook-Karp-thesis

Time Classes

P ⊂ NP ⊂ EXP ⊂ NEXP
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Some Complexity Classes under Cook-Karp-thesis

Space Classes

L ⊂ NL ⊂ PSPACE = NPSPACE ⊂ EXPSPACE ⊂ NEXPSPACE
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Alternating Turing Machines

∃-accepting states and ∀-accepting states.
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Facts and main uses of ATM

I NP = APT IME/∃.
I CONP = APT IME/∀.
I APT IME = PSPACE and APSPACE = EXP.
I APT IME complete problems concerns knowing in a

2-person perfect information game, whether player 1 has a
winning strategy (Games against Nature).

I BQF , is APTime-complete and hence PSPACE-complete.
I Intuitionistic Logic (IPL), many Modal Logics (S4, KT, K,

etc) and the core of the Description Logics (ALC) are
PSPACE-complete.
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Computational Complexity of Combined Modal Logics

Curious Phenomena
I K is PSPACE and K × K is PSPACE .
I K 4 is PSPACE-complete, but K × K 4 is

EXPTIME-complete.
I S5 is NP-complete, S5× S5 is coNEXPTIME-completes

and S5× S5× S5 is undecidable.
I (<,ω) and K 4 are PSPACE-complete, but their product is

undecidable.
I Int is PSPACE and IK (Int × K ) is PSPACE-complete.

(Open ??)
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The logic IK

The language of IK is described by the following grammar.

A ::=P | ⊥ | ¬A | A ∧ A | A ∨ A | A→ A | 2A | �A

LetM = 〈W ,≤,R,V 〉 be a Kripke model for IK, w ∈ W and α be an IK formula. The
satisfaction relation,M,w |= α, is defined inductively as follows:

A M,w |= P, iff, P ∈ V (w)

B M,w 6|= ⊥
C M,w |= α ∧ β, iff,M,w |= α andM,w |= β

D M,w |= α ∨ β, iff,M,w |= α orM,w |= β

NEG M,w |= ¬α, iff, for all w ′, w ≤ w ′,M,w ′ 6|= α

IMP M,w |= α→ β, iff, for all w ′, w ≤ w ′, ifM,w ′ |= α thenM,w ′ |= β

IBOX M,w |= 2α, iff, for all w ′, w ≤ w ′, for all v ′, w ′Rv ′,M, v ′ |= α.

IDIA M,w |= �α, iff, there is v , wRv ,M, v |= α.
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≤ and R are not independent
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Metatheorems on IK

I IK is sound and complete regarded IK frames.
I IPL ⊂ iALC (hardness is PSPACE)
I Alternating Polynomial Turing-Machine to find out winner-strategy on

the SAT-Game adapted from Areces2000 (upper-bound is PSPACE).
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IK is PSPACE-complete

SATIK ⊂ PSPACE

I One wants fo verify whether Γ→ γ is satisfiable.
I Γ→ γ is satisfiable, if and only if, (uθ∈Γθ)→ γ is satisfiable in a model

of Γ. A game is defined on Γ ∪ {γ}
I ∃loise starts by playing a list {L0, . . . , Lk} of Γ ∪ {γ}-Hintikka I-sets, and

two relations R and 2 on them.
I ∃loise loses if she cannot provide the list as a pre-model.
I ∀belard chooses a set from the list and a formula inside this set.
I ∃loise has to verify/extend the (pre)-model in order to satisfy the

formula.
I Γ ∪ γ is satisfiable, iff, ∃loise has a winning strategy.

∆-Hintikka I-set is a maximal prime consistent set of subformulas from ∆.
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Fixing a missing point in the proof

The initial move of ∃loise is:

∃loise starts by playing a list {L0, . . . ,Lk} of
(Γ ∪ {γ})-Hintikka I-sets, and two relations R and 2 on
them.

The following condition has to be added:

k should be polynomially bounded by α = Γ→ γ length.
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Can ∃loise be happy at the first move ?

The conditions on {L0, . . . ,Lk} list of α-Hintikka I-sets

CF1 If Lw 2 L′w and LwRLv then there exists L′v , such that L′wRL′v and
Lv 2 L′v .

CF2 If Lv 2 L′v and LvRLw then there is L′w , such that Lw 2 L′w and
L′vRL′w .

Here If β ∈ F(α), β ∈ Li and Li 2 Lj , then β ∈ Lj .

Form α ∈ L0 and, if Li = Lj then i = j

CNEG for all Li , for all ¬β ∈ F(α), if Li 2 Lj and β ∈ Lj then ¬β 6∈ Li

AND for all Li , for all β1 ∧ β2 ∈ F(α), if β1 ∧ β2 ∈ Li then βk ∈ Li , k = 1, 2

OR for all Li , for all β1 ∨ β2 ∈ F(α), if β1 ∨ β2 ∈ Li then either β1 ∈ Li or
β2 ∈ L2

CIMP for all Li , for all β1 → β2 ∈ F(α), if Li 2 Lj , β1 ∈ Lj and β2 6∈ Lj then
β1 → β2 6∈ Li

CIDIA for all �β ∈ F(α), if LiRLj and �β 6∈ Li then β 6∈ Lj

CIBOX for all Li and Lj , for all 2β ∈ F(α), if Li 2 Lj , LjRLh and β 6∈ Lh, then
2β 6∈ Li
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And ∀belard goes on {L0, . . . ,Lk}...
If ∃loise does not lose when she presents {L0, . . . , Lk} then the match continues and ∀belard may follow one of
the two items below:

MODAL ∀belard must choose three sets Li , Lj , Lh , Li 2 Lj , LiRLh and a formula A ∈ Lj to attack
and ∃loise must respond according to the following items:

DIA If A is �β, then ∃loise must provide an α-Hintikka set Y , such that:
β ∈ Y and for all �γ ∈ F(α), if �γ 6∈ Lj then γ 6∈ Y . For all
2γ ∈ F(α), if 2γ ∈ Lj then 2γ ∈ Lj and γ ∈ Y .

BOX If A is 2β, then ∃loise must provide an α-Hintikka set Y , such that:
β ∈ Y and for all 2γ ∈ F(α), for each Lk , Lk 2 Lj , such that
2γ ∈ Lk then γ ∈ Y . For all �γ ∈ F(α), if �γ 6∈ Lj then γ 6∈ Y .

IntProp For all ¬γ ∈ F(α), if ¬γ ∈ Lh then γ 6∈ Y . For all
γ1 → γ2 ∈ F(α), if γ1 → γ2 ∈ Lh then either β1 6∈ Y or
β2 ∈ Y .

INTUI ∀belard must choose three sets Li , Lj , Lh , Lj 2 Lh , LiRLj and a formula A ∈ Li to attack
and ∃loise must respond according to the following items:

Imp If A is β1 → β2, then ∃loise must provide an α-Hintikka set Y , such
that, either β1 6∈ Y or β2 ∈ Y . For all ¬γ ∈ F(α), if ¬γ ∈ Li
then γ 6∈ Y . For all γ1 → γ2 ∈ F(α), if γ1 → γ2 ∈ Li then
either β1 6∈ Y or β2 ∈ Y .

Neg If A is ¬β, then ∃loise must provide an α-Hintikka set Y , such that,
β 6∈ Y . For all ¬γ ∈ F(α), if ¬γ ∈ Li then γ 6∈ Y . For all
γ1 → γ2 ∈ F(α), if γ1 → γ2 ∈ Li then either β1 6∈ Y or
β2 ∈ Y .

Modal For all �γ ∈ F(α), if �γ 6∈ Y then γ 6∈ Lh . For all 2γ ∈ F(α), if
γ 6∈ Lh , then 2γ 6∈ Y .

STOP1 In any of the items above, if the Y ∃loise provides is among the α-Hintikka sets already on
the match, then the game stops and ∃loise win.

STOP2 If ∀belard cannot provide any of the three sets stated in items MODAL and INTUI, under the
respective conditions, then ∃loise wins.



On the Computational Complexity of Intuitionistic Modal and Description Logic

Motivation

Ensuring that k is polynomially bounded by lenght(α)

I We can see the list {H0, . . . ,Hk} together with the relations R
and 2 in a tree-form.

I We prove that this tree has a polynomially bounded height
regraded lenght(α).

I We prove that this tree has log2(lenght(α)) possible
ramifications.

I We conclude the polynomial bound on k
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Technical Lemmas

Lemma
Let L = {H0,H1, . . . ,Hk} be a list of α-Hintikka sets satisfying the conditions stated
in 14. Let {Hp0 , . . . ,Hpi , . . . ,Hpn} be a maximal sub-list of L, such that for all
j = 0, n − 1, HpjRHpj+1 or for all j = 0, n − 1, Hpj 2 Hpj+1 , and for all j1, j2 = 0, n, if
Hpj1

= Hpj2
then j1 = j2. So, k is polynomially bounded by l(α).

Lemma
Let L = {H0,H1, . . . ,Hk} be a list of α-Hintikka sets satisfying the conditions stated
in 14. Let {Hp0 , . . . ,Hpi , . . . ,Hpn} be a maximal sub-list of L, such that for all j = 1, n,
there are j1 6= j2, j1, j2 = 0, k such that, HpjRHj1 and Hpj 2 Hj2 . Under these
conditions, n = c.log(l(α)).
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