# On the Computational Complexity of Intuitionistic Modal and Description Logic 

Edward Hermann Hausler<br>Mario Benevides<br>Valeria de Paiva<br>Alexandre Rademaker

Departamento de Informática - PUC-Rio - Brasil
Coppe-UFRJ
FGV - Brasil
Univ. Birmingham - UK
EMAP November 2011

## Easy tasks versus Hard tasks

Basic considerations on SAT

- It is easy to verify that a boolean formula is truth under an assignment.
- Is it easy to find/build an assignment that satisfies a boolean formula?
- What is "easy" in computational terms ??
- Worst case analysis for algorithms.
- Best algorithm analysis for problems.


## Easy tasks versus Hard tasks

Finding an assignment that satisfies a boolean formula $\alpha$, considering that each million assignments is evaluated in 1 sec . Naive Algorithm

| $\mathbf{k}$ | $2^{\mathbf{k}}$ | Time |
| :---: | :---: | :---: |
| 5 | 32 | insignificant |
| 10 | 1024 | 0.001 seg |
| 16 | 65536 | 0.06 seg |
| 20 | $1048 \times 10^{3}$ | 1 seg |
| 32 | $4.29 \times 10^{9}$ | 1 h 12 min |

## Easy tasks versus Hard tasks

Problems as hard as SAT

- Given a directed graph G, is there a cycle that visits every vertex exactly once? (Hamilton)
- Given n cities, and distances $d(i, j)$ between each pair of cities, does there exist a path of length $\leq k$ that visits each city exactly once? (TravelingSalesman)
- It is easy to verify that a route is a hamiltonian cycle in the graph. How about finding a route that is a hamiltonian cycle?
- An efficient solution to Hamilton carries with it an efficient solution to SAT.
- An efficient solution to SAT carries with it an efficient solution to Hamilton.

Time used to find a cycle in a Graph with $k$ vertexes
The computer verifies 1 million routes in 1 sec .

| $\mathbf{k}$ | $(\mathbf{k}-1)!$ | Cálculo total |
| ---: | :---: | :---: |
| 5 | 24 | insignificante |
| 10 | 362880 | 0.3 seg |
| 15 | 87 bilhões | 24 hs e 6 min |
| 20 | $1.2 \times 10^{17}$ | 3 milhões de anos |
| 25 | $6.2 \times 10^{23}$ | $0.19 \times 10^{17}$ anos |
|  |  |  |

On the Computational Complexity of Intuitionistic Modal and Description Logic
$L_{\text {Motivation }}$

## Solving SAT using Hamilton



## Some Complexity Classes under Cook-Karp-thesis

Time Classes

$$
\mathcal{P} \subset \mathcal{N P} \subset \mathcal{E X P} \subset \mathcal{N E X}
$$

## Some Complexity Classes under Cook-Karp-thesis

## Space Classes

$\mathcal{L} \subset \mathcal{N L} \subset \mathcal{P S P A C E}=\mathcal{N} \mathcal{P S P A C E} \subset \mathcal{E X P S P A C E} \subset \mathcal{N E X} \mathcal{X S P A C E}$

## Alternating Turing Machines

$\exists$-accepting states and $\forall$-accepting states.


## Facts and main uses of ATM

- $\mathcal{N P}=\mathcal{A P} \mathcal{T} \mathcal{I M E} / \exists$.
- $\mathcal{C O N P}=\mathcal{A P T} \mathcal{I} \mathcal{M E} / \forall$.

- $\mathcal{A P} \mathcal{T} \mathcal{I} \mathcal{M E}$ complete problems concerns knowing in a 2-person perfect information game, whether player 1 has a winning strategy (Games against Nature).
- BQF, is APTime-complete and hence PSPACE-complete.
- Intuitionistic Logic (IPL), many Modal Logics (S4, KT, K, etc) and the core of the Description Logics (ALC) are PSPACE-complete.


## Computational Complexity of Combined Modal Logics

Curious Phenomena

- $K$ is PSPACE and $K \times K$ is PSPACE.
- K4 is PSPACE-complete, but $K \times K 4$ is EXPTIME-complete.
- S5 is NP-complete, $S 5 \times S 5$ is coNEXPTIME-completes and $S 5 \times S 5 \times S 5$ is undecidable.
- $(<, \omega)$ and $K 4$ are PSPACE-complete, but their product is undecidable.
- Int is PSPACE and IK (Int $\times K$ ) is PSPACE-complete. (Open ??)


## The logic IK

The language of IK is described by the following grammar.

$$
A::=P|\perp| \neg A|A \wedge A| A \vee A|A \rightarrow A| \square A \mid \diamond A
$$

Let $\mathcal{M}=\langle W, \leq, R, V\rangle$ be a Kripke model for IK, $w \in W$ and $\alpha$ be an IK formula. The satisfaction relation, $\mathcal{M}, w \models \alpha$, is defined inductively as follows:

$$
\begin{aligned}
& \text { A } \mathcal{M}, w \models P \text {, iff, } P \in V(w) \\
& \text { B } \mathcal{M}, w \neq \perp \\
& \text { C } \mathcal{M}, w \models \alpha \wedge \beta \text {, iff, } \mathcal{M}, w \models \alpha \text { and } \mathcal{M}, w \models \beta \\
& \text { D } \mathcal{M}, w \models \alpha \vee \beta \text {, iff, } \mathcal{M}, w \models \alpha \text { or } \mathcal{M}, w \models \beta \\
& \text { NEG } \mathcal{M}, w \models \neg \alpha \text {, iff, for all } w^{\prime}, w \leq w^{\prime}, \mathcal{M}, w^{\prime} \not \models \alpha \\
& \text { IMP } \mathcal{M}, w \models \alpha \rightarrow \beta \text {, iff, for all } w^{\prime}, w \leq w^{\prime} \text {, if } \mathcal{M}, w^{\prime} \models \alpha \text { then } \mathcal{M}, w^{\prime} \models \beta \\
& \text { IBOX } \mathcal{M}, w \models \square \alpha \text {, iff, for all } w^{\prime}, w \leq w^{\prime}, \text { for all } v^{\prime}, w^{\prime} R v^{\prime}, \mathcal{M}, v^{\prime} \models \alpha \text {. } \\
& \text { IDIA } \mathcal{M}, w \models \diamond \alpha \text {, iff, there is } v, w R v, \mathcal{M}, v \models \alpha .
\end{aligned}
$$

## Metatheorems on IK

- $I K$ is sound and complete regarded $I K$ frames.
- IPL $\subset i A L C$ (hardness is PSPACE)
- Alternating Polynomial Turing-Machine to find out winner-strategy on the SAT-Game adapted from Areces2000 (upper-bound is PSPACE).


## IK is PSPACE-complete

## $S A T_{I K} \subset$ PSPACE

- One wants fo verify whether $\Gamma \rightarrow \gamma$ is satisfiable.
- $\Gamma \rightarrow \gamma$ is satisfiable, if and only if, $\left(\square_{\theta \in \Gamma} \theta\right) \rightarrow \gamma$ is satisfiable in a model of $\Gamma$. A game is defined on $\Gamma \cup\{\gamma\}$
- ヨloise starts by playing a list $\left\{L_{0}, \ldots, L_{k}\right\}$ of $\Gamma \cup\{\gamma\}$-Hintikka l-sets, and two relations $\mathcal{R}$ and $₹$ on them.
- $\exists$ loise loses if she cannot provide the list as a pre-model.
- $\forall$ belard chooses a set from the list and a formula inside this set.
- ヨloise has to verify/extend the (pre)-model in order to satisfy the formula.
- $\ulcorner\cup \gamma$ is satisfiable, iff, $\exists$ loise has a winning strategy.
$\Delta$-Hintikka l-set is a maximal prime consistent set of subformulas from $\Delta$.


## Fixing a missing point in the proof

The initial move of $\exists$ loise is:
$\exists$ loise starts by playing a list $\left\{L_{0}, \ldots, L_{k}\right\}$ of $(\Gamma \cup\{\gamma\})$-Hintikka l-sets, and two relations $\mathcal{R}$ and $\preccurlyeq$ on them.

The following condition has to be added:
$k$ should be polynomially bounded by $\alpha=\Gamma \rightarrow \gamma$ length.

## Can $\exists$ loise be happy at the first move ?

The conditions on $\left\{L_{0}, \ldots, L_{k}\right\}$ list of $\alpha$-Hintikka I-sets
CF1 If $L_{w} \prec L_{w}^{\prime}$ and $L_{w} \mathcal{R} L_{v}$ then there exists $L_{v}^{\prime}$, such that $L_{w}^{\prime} \mathcal{R} L_{v}^{\prime}$ and $L_{v} \gtrless L_{v}^{\prime}$.
CF2 If $L_{v} \prec L_{v}^{\prime}$ and $L_{v} \mathcal{R} L_{w}$ then there is $L_{w}^{\prime}$, such that $L_{w} \prec L_{w}^{\prime}$ and $L_{v}^{\prime} \mathcal{R} L_{w}^{\prime}$.
Here If $\beta \in \mathcal{F}(\alpha), \beta \in L_{i}$ and $L_{i} \preccurlyeq L_{j}$, then $\beta \in L_{j}$.
Form $\alpha \in L_{0}$ and, if $L_{i}=L_{j}$ then $i=j$
CNEG for all $L_{i}$, for all $\neg \beta \in \mathcal{F}(\alpha)$, if $L_{i} \preccurlyeq L_{j}$ and $\beta \in L_{j}$ then $\neg \beta \notin L_{i}$
AND for all $L_{i}$, for all $\beta_{1} \wedge \beta_{2} \in \mathcal{F}(\alpha)$, if $\beta_{1} \wedge \beta_{2} \in L_{i}$ then $\beta_{k} \in L_{i}, k=1,2$
OR for all $L_{i}$, for all $\beta_{1} \vee \beta_{2} \in \mathcal{F}(\alpha)$, if $\beta_{1} \vee \beta_{2} \in L_{i}$ then either $\beta_{1} \in L_{i}$ or $\beta_{2} \in L_{2}$
CIMP for all $L_{i}$, for all $\beta_{1} \rightarrow \beta_{2} \in \mathcal{F}(\alpha)$, if $L_{i} \prec L_{j}, \beta_{1} \in L_{j}$ and $\beta_{2} \notin L_{j}$ then $\beta_{1} \rightarrow \beta_{2} \notin L_{i}$
CIDIA for all $\diamond \beta \in \mathcal{F}(\alpha)$, if $L_{i} \mathcal{R} L_{j}$ and $\diamond \beta \notin L_{i}$ then $\beta \notin L_{j}$
CIBOX for all $L_{i}$ and $L_{j}$, for all $\square \beta \in \mathcal{F}(\alpha)$, if $L_{i} \preccurlyeq L_{j}, L_{j} \mathcal{R} L_{h}$ and $\beta \notin L_{h}$, then $\square \beta \notin L_{i}$

## And $\forall$ belard goes on $\left\{L_{0}, \ldots, L_{k}\right\} \ldots$

If $\exists$ loise does not lose when she presents $\left\{L_{0}, \ldots, L_{k}\right\}$ then the match continues and $\forall$ belard may follow one of the two items below:

MODAL $\forall$ belard must choose three sets $L_{i}, L_{j}, L_{h}, L_{i} \gtrless L_{j}, L_{i} \mathcal{R} L_{h}$ and a formula $A \in L_{j}$ to attack and $\exists$ loise must respond according to the following items:

DIA If $A$ is $\diamond \beta$, then $\exists$ loise must provide an $\alpha$-Hintikka set $Y$, such that: $\beta \in Y$ and for all $\diamond \gamma \in \mathcal{F}(\alpha)$, if $\diamond \gamma \notin L_{j}$ then $\gamma \notin Y$. For all $\square \gamma \in \mathcal{F}(\alpha)$, if $\square \gamma \in L_{j}$ then $\square \gamma \in L_{j}$ and $\gamma \in Y$.
BOX If $A$ is $\square \beta$, then $\exists$ loise must provide an $\alpha$-Hintikka set $Y$, such that: $\beta \in Y$ and for all $\square \gamma \in \mathcal{F}(\alpha)$, for each $L_{k}, L_{k} \preccurlyeq L_{j}$, such that $\square \gamma \in L_{k}$ then $\gamma \in Y$. For all $\diamond \gamma \in \mathcal{F}(\alpha)$, if $\diamond \gamma \notin L_{j}$ then $\gamma \notin Y$.
IntProp For all $\neg \gamma \in \mathcal{F}(\alpha)$, if $\neg \gamma \in L_{h}$ then $\gamma \notin Y$. For all $\gamma_{1} \rightarrow \gamma_{2} \in \mathcal{F}(\alpha)$, if $\gamma_{1} \rightarrow \gamma_{2} \in L_{h}$ then either $\beta_{1} \notin Y$ or $\beta_{2} \in Y$.
INTUI $\forall$ belard must choose three sets $L_{i}, L_{j}, L_{h}, L_{j} \gtrless L_{h}, L_{i} \mathcal{R} L_{j}$ and a formula $A \in L_{i}$ to attack and $\exists$ loise must respond according to the following items:

Imp If $A$ is $\beta_{1} \rightarrow \beta_{2}$, then $\exists$ loise must provide an $\alpha$-Hintikka set $Y$, such that, either $\beta_{1} \notin Y$ or $\beta_{2} \in Y$. For all $\neg \gamma \in \mathcal{F}(\alpha)$, if $\neg \gamma \in L_{i}$ then $\gamma \notin Y$. For all $\gamma_{1} \rightarrow \gamma_{2} \in \mathcal{F}(\alpha)$, if $\gamma_{1} \rightarrow \gamma_{2} \in L_{i}$ then either $\beta_{1} \notin Y$ or $\beta_{2} \in Y$.
Neg If $A$ is $\neg \beta$, then $\exists$ loise must provide an $\alpha$-Hintikka set $Y$, such that, $\beta \notin Y$. For all $\neg \gamma \in \mathcal{F}(\alpha)$, if $\neg \gamma \in L_{i}$ then $\gamma \notin Y$. For all $\gamma_{1} \rightarrow \gamma_{2} \in \mathcal{F}(\alpha)$, if $\gamma_{1} \rightarrow \gamma_{2} \in L_{i}$ then either $\beta_{1} \notin Y$ or $\beta_{2} \in Y$.
Modal For all $\diamond \gamma \in \mathcal{F}(\alpha)$, if $\diamond \gamma \notin Y$ then $\gamma \notin L_{h}$. For all $\square \gamma \in \mathcal{F}(\alpha)$, if $\gamma \notin L_{h}$, then $\square \gamma \notin Y$.
STOP1 In any of the items above, if the $Y \exists$ loise provides is among the $\alpha$-Hintikka sets already on the match, then the game stops and $\exists$ loise win.
STOP2 If $\forall$ belard cannot provide any of the three sets stated in items MODAL and INTUI, under the

## Ensuring that $k$ is polynomially bounded by lenght $(\alpha)$

- We can see the list $\left\{H_{0}, \ldots, H_{k}\right\}$ together with the relations $\mathcal{R}$ and $\preccurlyeq$ in a tree-form.
- We prove that this tree has a polynomially bounded height regraded lenght( $\alpha$ ).
- We prove that this tree has $\log _{2}(\operatorname{lenght}(\alpha))$ possible ramifications.
- We conclude the polynomial bound on $k$


## Technical Lemmas

## Lemma

Let $L=\left\{H_{0}, H_{1}, \ldots, H_{k}\right\}$ be a list of $\alpha$-Hintikka sets satisfying the conditions stated in 14. Let $\left\{H_{p_{0}}, \ldots, H_{p_{i}}, \ldots, H_{p_{n}}\right\}$ be a maximal sub-list of $L$, such that for all $j=0, n-1, H_{p_{j}} \mathcal{R} H_{p_{j+1}}$ or for all $j=0, n-1, H_{p_{j}} \preccurlyeq H_{p_{j+1}}$, and for all $j_{1}, j_{2}=0, n$, if $H_{p_{j_{1}}}=H_{p_{j_{2}}}$ then $j_{1}=j_{2}$. So, $k$ is polynomially bounded by $l(\alpha)$.

Lemma
Let $L=\left\{H_{0}, H_{1}, \ldots, H_{k}\right\}$ be a list of $\alpha$-Hintikka sets satisfying the conditions stated in 14. Let $\left\{H_{p_{0}}, \ldots, H_{p_{i}}, \ldots, H_{p_{n}}\right\}$ be a maximal sub-list of $L$, such that for all $j=1, n$, there are $j_{1} \neq j_{2}, j_{1}, j_{2}=0, k$ such that, $H_{p_{j}} \mathcal{R} H_{j_{1}}$ and $H_{p_{j}} \prec H_{j_{2}}$. Under these conditions, $n=c . \log (I(\alpha))$.

## THANK YOU

